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The cracking of brittle samples having suffered thermal shocks may be calculated 
by using the thermoelastic theory. This theory leads to a size effect, which is not 
always verified by experiments. The use of acoustic methods of characterization, 
for samples of various shapes and sizes, shows the size effect, but the experimental 
ATe values are greater than the calculated ones. This discrepancy must be due both 
to an overestimation of the A coefficient and an underestimation of the R 
parameter. 
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1. I N T R O D U C T I O N  

Because of  their high thermomechanical  properties, "s t ructural  ceramics"  
can be used in thermal engines to improve their efficiency. But such 
applications require a rigorous choice between various materials, and call for 
an accurate characterizat ion of  their properties. The pieces work in an 
atmosphere which may be corrosive, and suffer a high level of thermome- 
chanical stresses. Consequently,  s tructural  ceramics must  be able to resist 
corrosion (02, CO, CO2, H 2 0 . . . ) ,  their strength at high temperatures  must  
be high, creep sensitivity must  be low, and thermal shock resistance must  be 
good. It is hoped that  ceramics will be substituted for metallic alloys in Diesel 
engines and gas turbines [1]. 

The thermal shock resistance is an important  parameter ,  because opera- 
tion of  thermal  engines leads to variations in temperature  (between room 
temperature  and the operating temperature) .  Hea t  exchanges are usually due 
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to gaseous convection, which induces rather low temperature variations and 
causes mild thermal shocks. However, such mild thermal shocks are not easily 
reproducible, and studies on the thermal shock resistance of materials are 
generally performed by using severe thermal shocks (mainly water quench- 
ing) [2]. For samples heated at a temperature TI, then cooled in a liquid bath 
at a temperature T2, the measurement of the strength tr of the shocked 
samples shows a curve a = f iAT) ,  which gives informations about the critical 
temperature difference ATe (and thus about the resistance to cracking) and 
about the a'/a" ratio of the strength before and after the shock. This ratio 
characterizes the resistance to damage [3,4]. 

Resistance to damage is the main parameter for refractories, whereas 
the first requirement for structural ceramics is the resistance to cracking. 
This is why it is important to determine the maximum temperature difference 
a piece can stand. This requires taking into consideration the size effect which 
states that the critical temperature decreases as the volume of the sample 
increases [5]. It is important to know the influence of the size effect for the 
following reason: the results obtained from laboratory experiments performed 
on small samples must be applicable to and used for industrial pieces, which 
may be much larger. The aim of the present study is to evaluate, for a given 
material, the critical temperature difference for samples of various shapes 
and sizes; the results are then discussed in the frame of the thermoelastic 
theory of thermal shocks [6]. 

2. MATERIALS, SAMPLES,  EXPERIMENTAL PROCEDURE 

2.1.  M a t e r i a l s  

All the samples used were made of 99.5% pure alpha alumina (Degussit 
A1 23), almost perfectly dense. 

2.2. Samples 

Samples of four different shapes have been used: prismatic bars, long, 
cylinders, discs, and short cylinders. The prismatic bars (4 x 4 • 25 mm) 
were obtained by sawing rectangular plates 25 x 50 mm. The samples were 
machined, then diamond ground. The long cylinders (6 mm diam, 80 mm 
long) were used in the as received condition. The discs (30 mm diam, 2.5 mm 
thick; and 30 mm diam, 4.5 mm thick) were machined from discs of greater 
size (32 mm diam, 5 mm thick). The parallel faces were diamond ground. The 
short cylinders (20 mm diam, 20 mm long) were prepared by sawing a 
cylindrical bar 20 mm diam, 500 mm long. The parallel faces were machined 
up to a parallelism of better than 1 ~tm. 
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2.3. Experimental  Procedure 

2.3.1. Thermal Shocks 

The samples were heated for 1 hr in a furnace at a temperature T1, then 
quenched and stirred in water at 20~ (AT = ( T  1 - 2 0 ~  then dried for 15 
rain at 105~ 

2.3.2. Destructive Measurements of  ATc 

Strength after thermal shocks was measured by three-point bending (21 
mm span) on the prismatic bars, by three-point bending (60 mm span) on the 
long cylinders, and by biaxial flexure on the discs [7]. For the prismatic bars, 
the corners of the face in tension had been worn out. 

2.3.3. Nondestructive Measurements of  AT~ 

Two dynamical methods, at medium and high frequencies, have been 
used [8] to determine AT~ by a nondestructive method. For the medium 
frequency method ( -10  kHz), the resonant frequencies and the damping 
capacity of vibrating cylinders or vibrating discs were measured [9, 10]. 
These parameters were modified when AT > ATe, and it has been pointed out 
[11] that the modifications are due to cracking of the sample. For the high 
frequency method ( -10  MHz), the velocities of the shear and longitudinal 
waves and the acoustic attenuation were measured using either phase 
comparison or pulse echo overlap [12]. The velocities were changed only 
slightly by the shocks, contrary to the acoustic attentuation, which dramati- 
cally increases at AT = ATe, because of the scattering of acoustic waves due 
to the cracks. Since all the measurements are nondestructive, it is possible to 
operate by either cumulative or noncumulative shocks; there seems to be no 
thermal fatigue when there are a few shocks only [13]. 

2.3.4. Dye Penetrant Method 

Because the A1 23 alumina is dense, a dye penetrant method permits 
observation of the extent of cracking. 

3. RESULTS 

For the prismatic beams, Fig. 1 shows the variations of strength versus 
the temperature difference, and Fig. 2 gives the variations of standard 
deviation: it shows that the scattering is maximum when AT = ATe [14] and 
that another peak is located at ATe, which corresponds to the quasi-static 
propagation of cracks [15]. For the long cylinders broken by bending, the 
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Fig. I. Strength versus temperature difference for prismatic 
bars. 

results are similar. Figure 3 shows the variations of the damping capacity for 
noncumulative shocks. Figures 4 and 5 show the variations of resonance 
frequencies of the 30 mm diam, 2.5 mm thick discs, for cumulative and 
noncumulative shocks. They show that AT~ is the same in both cases. For 30 
mm diam, 4.5 mm thick discs, the curve is similar, but ATe is different. 

For the biaxial flexure of discs, the variations of strength are not 
important, which makes it difficult to determine AT~ accurately [16]. In the 
case of diamond ground discs, Fig. 6 shows that a" /a '  > 0.85; in the case of 
coarsely ground discs, Fig. 7 shows that a remains constant, equal to 200 N �9 
mm -2 (instead of 250 N �9 mm -z for the diamond ground discs). This lowering 
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Standard deviation of strength versus temperature 
difference for prismatic bars. 
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Fig. 3. Damping capacity of vibrating 6 (diam) • 80 mm bars 

versus temperature difference, for noncumulative shocks. 

of the strength is due to machining flaws, which appear to be more critical 
than the thermal cracks. In such cases, the destructive measurements of 
strength are not suitable to study the resistance to cracking, but the 
nondestructive measurements of elastic Constants always give accurate data 
(Fig. 8 shows unambiguously the value of ATc). 

Figure 9 shows the variations of the damping capacity for small 
cylinders. Such samples would require compression tests [14], which are not 
accurate, to determine their strength; as a result, the acoustic method is 
preferable. The dye penetrant test shows cracking of the samples (Figs. 
10-12). A summary of the results is given in Table I. 
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Fig. 4. Damping capacity of vibrating 30 (diam) x 2.5 mm 
discs versus temperature difference, for cumulative shocks (N~ 
and N2: first and second overtones). 
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Fig. 5. Damping capacity of vibrating 30 (diam) • 2.5 mm 
discs versus temperature difference, for noncumulative shocks 
(Nl and N2: first and second overtones). 

4. DISCUSSION 

The results show that ATe decreases as the volume of the sample 
increases, but only in the case of the most voluminous samples (short 
cylinders). ATe is about 180~ for small specimens (independent of their 
shape); the thick discs give ATe -165~ the massive cylinders give ATe 

105~ The above results may be compared with the data in the literature 
concerning the thermal shock behavior of polycrystalline alumina. For 
samples comparable with the bars used in the present study, AT~ is about 
180-190~ [16-18], and it is noted that the size effect is obvious in the 
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Strength versus temperature difference, for polished 30 
(diam) • 5 mm discs. 
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Strength versus temperature difference, for roughly 
ground 30 (diam) x 4.5 mm discs. 

extreme cases only [4, 19], or may even disappear [14]. Becher et al. [20] give 
AT~ from 210 up to 280~ for bars and discs of thicknesses from 3 down to 1.5 
mm. 

The advantage of using different methods appears clearly in the present 
work. It is possible to obtain a wide variation of ATe (ATe of long cylinders 

1.7 ATe of voluminous cylinders). The most voluminous samples are kept 
small enough to avoid experimental difficulties such as inhomogeneities of 
quenching. 

The critical temperature ATe may be theoretically derived by taking into 
account the mechanical and thermal properties of the material, the shape and 
size of the sample, and the conditions of heat exchanges. The thermoelastic 
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Fig. 8. Ratio of the frequencies of the two first overtones of 
vibrating 30 (diam) x 4.5 mm discs versus temperature differ- 
ence for noncumulative shocks. 
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Acoustic attenuation versus temperature difference for 
short cylinders, for cumulative shocks. 

Fig. 10. Cracking of short cylinders, for increasing temperature difference. 

Fig. 11. Cracking of various samples, for AT = ATe + e. 
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Fig. 12. Cracking of prismatic beam, for AT > ATe. 

theory [6] and the energetic theory [15] are based on a different hypothesis. 
The thermoelastic theory says that the cracking occurs when the maximum 
value of the thermal stresses reaches the fracture strength of the material, ai' 
Thus 

ATth cr~C(]wj.v, or A T t h = R / A  (1) 
A E o ~  

where R is the parameter of resistance to thermal cracking, E is Young's 
modulus, o~ is the linear thermal expansion coefficient, f(~) is a function of 
Poisson's ratio ~ and sample shape, and A is a dimensionless coefficient that 
varies with the experimental procedures [21]. A is related to Biot's number, 
13 = a h / k ,  where a is the "mean size" of the sample, usually taken as the ratio 
of specimen volume to surface area, or a multiple of this length; h is the heat 
exchange coefficient; and k is the thermal conductivity of the material. 

The energetic theory says that the preexisting defects (for instance, 
internal flaws or notches due to the machining) propagate when the lowering 
of the elastic energy is greater than the increase of surface energy on the 

Table I. Critical Temperature for Different Samples 

Size Volume AT~ 
Sample (mm) (mm 3) (~ 

Prismatic beam 4 x 4 x 25 400 D, 180 
Long cylinder 6 (diam) • 80 2,260 D, 180 ND 
Thin Disc 30 (diam) • 2.5 1,770 ND, 180 
Thick Disc 30 (diam) • 4.5 3,180 ND, 170; D, 165 
Short cylinder 20 (diam) • 20 6,280 ND, 105 
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crack boundaries. Consequently, the AT~ value depends upon the density of 
the internal defects. The main result of this theory is that  two opposite 
behaviors are expected: the flaws propagate kinetically if they are small, 
while they propagate quasi-statically if they are large. 

The energetic theory is known to be well suited to materials having a 
great number of rather large defects (for instance, porous refractories) and 
gives an excellent f rame to study the resistance to damage. In the present case 
of dense alumina, it seems better to discuss the results in the frame of the 
thermoelastic analysis, which is better suited to study the resistance to 
cracking. 

For this theory, ATe may vary with the shape and the size of the sample. 
Indeed, f (u) is a function of the specimen shape: f(u) = (1 - 2u)/1 - u) for 
the discs, andf(v)  = (1 - u) for the rods; the fracture strength cryis a function 
of the specimen size (Weibull effect); and A depends upon the severity of the 
shock, and consequently, upon the mean size a, which influences Biot's 
number/3. 

Concerning the a/value, it is not clear what an appropriate value should 
be. Becher et al. [20] think that ~rf might be related to the lower extreme of 
the strength distribution, not the mean strength. However, the ATe values are 
very reproducible, contrary to the strength as determined by a three-point 
bend test: for A1 23 alumina, the mean flexural strength is ay - 260 N �9 
mm -z, and Weibull 's modulus m = 13. Thus we have preferred to choose a f -  
~r b. Other measurements have given E - 35 • 104 N �9 mm -2, v ~ 0.25, and c~ 
~ 8 • 10 -6 K -~. Thus R - 70~ for bars or cylinders, and ~60~ for discs. I t  
must be noted that when ~ - 0.25,f(u) is almost the same for rods and discs, 
allowing that R ~ ay(1 - ~,)/Ea in both cases. 

The main problem is to evaluate/3. The mean size a is not precisely 
defined, and this term may introduce an error, the sign of which is unknown. 
By taking a = 2V/S, where Vis the volume and S is the area, one obtains a = 
1/2 radius for cylinders and a = thickness for discs (but some authors take 
a = 1/2 thickness for plates). The thermal conductivity is not accurately 
measured, and varies with the temperature.  For dense alumina, k ~ 5 W �9 
m -1 �9 K -1. However, the principal uncertainty arises from the heat exchange 
coefficient h. Singh et al. [2] and Becher et al. [20] have pointed out the 
difficulties in determining h. This coefficient is a function of the nature of the 
quenching media, the velocity of the sample in the fluid, and the size, the 
shape, the na tu re ,  and the smoothness of the specimen, as well as the 
instantaneous temperature difference between the specimen surface and 
the fluid. For water quenching of small specimens, Singh et al. give a very low 
value of /3  < 0.5 (natural convection). For a specimen moving in water, 
Becher et al. [20] have chosen h ~ 3-4 • 104W �9 m -2 . K ~;they have 
thought that h - 105 W . m -z . K -~ is a high value for alumina. In the 
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present work, the samples were vigorously stirred in water; however, they 
were smooth (which reduces h). Moreover, the 2xTc values were rather low, 
which leads us to take into account a rather low value of h (when alumina is 
quenched in room temperature water, h increases rapidly in the 150-250~ 
range) [20]. Due to these contradictory reasons, a value of h - 3 x 104 W �9 
m -2 �9 K -l seems to be acceptable: the corresponding/3 values are given in 
Table II. 

For the limiting case of/3 -- ,  0, ATth = R. As a result, the theoretical and 
the experimental values of ATc do not seem to agree with each other: such a 
discrepancy always leads to ATe > ATth. This point agrees with the conclusion 
of Becher et al. [20] that ATth must take into account 13, even in the case of 
large specimens suffering severe thermal shocks. However, it must be noted 
that for the short cylinders, AT~/R is 1.5, whereas for the long bars, ATc/R is 
2.6. This point clearly shows the size effect, ~ind most voluminous sample 
corresponding to/3 = 60 and the bar to/3 - 15. 

The previous results show that/3 is small enough to lead to A < 1, and 
consequently, ATth > R, in Eq. (1). To calculate A T t h  = R / A ,  the A 
parameter  must be known. Becher et al. [20] use the equation 

AT, h = R (B + C//3) for large/3 (/3 > 100) (2) 

with C = 3.25 for the plate and 4.67 for the rod. 
In the case of transient cooling of an infinitely long circular cylinder, 

Singh et al. [2] and Ziegler et al. [22] use the equation 

ATth = 1.451 R (1 + 3.41//3) (3) 

By taking the A values for an infinite circular cylinder [21] and an infinite 
flat plate [6], it is possible to obtain AT~h (See Table II).  The A values are 
very similar to the ones obtained by Eqs. (2) or (3). It must be noted that 
Kingery [6] takes a = 1/2 thickness for the plate, whereas a = thickness is 
taken in this work. 

The functions A(/3) that have been chosen are only a rough estimate: the 

Table II. Comparison of Thermal Shock Data for Different Samples 

Sample A ~,T,~ AxT~ 6To/AT,h 

Prismatic beam 12 0.5 140 180 1.29 
'Long cylinder 18 0.6 116 180 1.55 
Thin disc 15 0.55 109 t80 1.65 
Thick disc 27 0.65 92 165 1.79 
Short cylinder 60 0.85 82 105 1.28 
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discs are assimilated to an infinite plate, the other shapes to an infinite 
cylinder. Consequently, it seems difficult to say if the shape effect is 
significant by considering the ATc/ATth ratios, due to the poor accuracy of A. 
However, it must be noted that thermal stress theory would predict a lower 
ATc for the disc than for the bar, which corresponds to experiments of the 
present work, whereas the experiments by Becher et al. [20] indicate the 
opposite. 

5. CONCLUSIONS 

The use of both destructive and nondestructive experimental methods 
has allowed an accurate determination of the maximum temperature differ- 
ence that alumina samples will accept. These different methods have used 
thin and massive samples: in particular, the high frequency acoustic tech- 
niques allow one to measure low values of ATe, by using samples that are 
massive but not very voluminous. Consequently, a size effect has been clearly 
shown. 

It is difficult to know if the shape effect is significant, due to the rough 
approximation of the A parameter. However, it seems that the A(/3) functions 
are better suited for the bars than for the discs. It has been verified that the 
thermoelastic theory does not help in calculating the true value of ATe for a 
given sample and given quenching conditions: the experimental value of ATe 
is always significantly greater than the calculated value of ATth. 

The main reason for such discrepancies must be due to an overestimation 
of the h coefficient, and consequently of the A parameter, but this overestima- 
tion of A does not account for the full extent of the discrepancy. In the case of 
massive samples, /3 --~ ~, which means that A -~  1 whatever the exact 
expression of A(/3) is, and ATth ~ R. This last observation suggests the 
necessity of modifying the R parameter, which seems to be underestimated. 

The question is about the fracture strength ai: contrary to the usual 
claim for taking as equal to the Weibull lower limiting tensile strength, it 
would appear that a rather high value of ai must be chosen. This point is 
perhaps related to the fact that the thermal stresses result from a triaxial 
state of deformation, which is not the case of the tensile test or the bend test. 

REFERENCES 

1. H.B. Probst, Am. Ceram. Soc. Bull. 59:206 (1980). 
2. J.P. Singh, J. R. Thomas, and D. P. H. Hasselman, J. Am. Ceram. Soc. 63:140 (1980). 
3. J. Nakayama and M. Ishizuka, Am. Ceram. Soc. Bull. 47:666 (1966). 
4. R.D. Smith, H. U. Anderson, and R. E. Moore, Am. Ceram. Soc. Bull. 55:979 (1976). 
5. T.K. Gupta, J. Am. Ceram. Soc. 58:153 (1975). 
6. W.D. Kingery, J. Am. Ceram. Soc. 38:3 (1955). 



Thermal Shock Resistance of Ceramics I01 

7. J.B. Wachtman, Jr., W. Capps, and J. Mandel, J. Mater. 7:188 (1972). 
8. J .C. Glandus and P. Boch, in Proceedings o f  the 5th ICF (Pergamon Press, Oxford, U.K., 

in press). 
9. M. Nuovo, Ric. Sci. 31:212 (1961). 

10. J. Ryll Nardzewski, Acustica 32:342 (1975). 
11. J.C. Glandus and P. Boch, L'Industrie Cbram. 738:238 (1980). 
12. R. Truell, C. Elbaum, and B. Chick, Ultrasonic Methods in Solid State Physics (Academic 

Press, New York, 1969). 
13. J. C. Glandus and P. Boch, Energy and Ceramics, Mater. Sci. Monographs, Vol. 6, 

(Elsevier, New York, 1980), p. 661. 
14. J .H. Ainsworth and R. E. Moore, J. Am. Ceram. Soc. 52:628 (1969). 
15. D.P .H.  Hasselman, J. Am. Ceram. Soc. 52:600 (1969). 
16. T.K. Gupta, J. Am. Ceram. Soc. 55:249 (1972). 
17. R.W. Davidge and G. Tappin, Trans. Br. Ceram. Soc. 66:405 (1967). 
18. N. Clausen, R. Pabst, and C. P. Lahman, Proc. Br. Ceram. Soc., Mech. Prop. Ceramics 

2:139 (1975). 
19. D.P.H.  Hasselman, J. Am. Ceram. Soc. 53:490 (1970). 
20. P.F. Becher, D. Lewis, K. R. Carman, and A. C. Gonzalez, Am. Ceram. Sac. Bull. 59:542 

(1980). 
21. E. Glenny and M. G. Royston, Trans. Br. Ceram. Soc. 57:645 (1958). 
22. G. Ziegler and J. Heinrich, Ceramurgia Int. 6:25 (1980). 


